

специальный раздел **МИР КЛЕТОК**

Фибробласты дермы — основная мишень для косметологических вмешательств с целью стимуляции регенерации кожи и ее омоложения. Посредством каких механизмов косметологические методы воздействуют на разные звенья фибробластического дифферона? Можно ли с их помощью повлиять непосредственно на стволовые клетки кожи для улучшения их функционирования? Каким образом состояние коллагенового матрикса сказывается на функциональной активности фибробластов?

Возможности косметологического воздействия

на стволовые клетки кожи

АЛЛА ЗОРИНА,

қ.м.н.,врач-биохимик, главный специалист отдела регенеративной медицины Института стволовых клеток человека (ИСКЧ)

ВАДИМ ЗОРИН,

к.б.н.,врач-биофизик, руководитель отдела регенеративной медицины ИСКЧ Москва

ри любом типе старения кожи ее возрастные изменения напрямую обусловлены возрастной дегенерацией клеток дермы, составляющих фибробластический дифферон. Поэтому максимально эффективный и одновременно естественный путь омоложения кожи и профилактики ее старения подразумевает прежде всего стимуляцию пролиферативной активности клеток-предшественниц фибробластов, включая стволовые клетки (СК), и биосинтетической активности зрелых фибробластов (дифференцированных клеток).

Косметологические методы стимуляции функциональной активности фибробластов дермы

Применение препаратов гиалуроновой кислоты

Гиалуроновая кислота (ГК) является одним из главных компонентов основного вещества внеклеточного матрикса — ВКМ (от англ. extracellular matrix — ECM) [1]. Исследования показали, что интрадермальное введение препаратов с ГК, как стабилизированной, так и нестабилизированной, помимо повышения

объема и гидратации дермы приводят к увеличению в области введения новообразованного коллагена [2]. Процесс инициации неоколлагеногенеза может быть обусловлен действием нескольких потенциально возможных механизмов. Кратко охарактеризуем их:

• Рецептор-опосредованная стимуляция фибробластов дермы через взаимодействие ГК, преимущественно низкомолекулярной нестабилизированной, с эндогенными клеточными рецепторами, включая CD44 и RHAMM. Посредством этих рецепторов осущест-

- вляется ГК-опосредованная активность клеток, включая биосинтез коллагена и, возможно, пролиферацию фибробластов. Так, К. Rock и соавт. (2010) наблюдали в зонах введения низкомолекулярной нестабилизированной ГК пролиферацию фибробластов [3].
- Восстановление целостности коллагенового матрикса, которое наблюдается в основном после внутрикожного введения стабилизированной высокомолекулярной ГК (ВГК). По мнению F. Wang и соавт. (2007), введенная в кожу ВГК заполняет преимущественно области матрикса с фрагментированными коллагеновыми волокнами (за счет их более рыхлой структуры), тем самым коллагеновый матрикс вновь приобретает целостность. А это, в свою очередь, способствует восстановлению фокальных контактов между ним и фибробластами, нарушенных при фрагментации коллагена [2]. Именно эти контакты обеспечивают нормальное механическое натяжение между цитоскелетом и коллагеном, что является обязательным условием для функциональной активности клеток (подробнее об этом рассказано ниже, в разделе «Коллагеновый матрикс и функционирование
- фибробластов»). F. Wang и соавт. выявили в зонах введения стабилизированной высокомолекулярной ГК механически растянутые синтетическиактивные фибробласты и синтез коллагена de novo [2].
- Активация трансформирующего фактора роста бета (TGF-β) — важного индуктора синтеза коллагена. Наблюдается после внутрикожного введения любого типа ГК [2].

Лазерные методы воздействия на кожу

Процесс восстановления кожи после ее обработки лазером протекает по механизму заживления ран: с ремоделированием коллагена и других компонентов ВКМ дермы. Каким образом этот метод влияет на фибробласты? Как пример, приведем результаты исследований воздействия на кожу неабляционного фракционного фототермолиза, суть которого заключается в микроскопическом термальном фракционном повреждении дермы [4-6]. Показано, что оно вызывает индукцию высокоорганизованного каскада молекулярных механизмов [5]: после травмы кожи в первой фазе наблюдается повышение уровня провоспалительных цитокинов IL-1β и TNF-α, что вызывает индукцию транскрипционного фактора

АР-1 и, соответственно, сопровождается повышением уровня металлопротеиназ ММР-1, -3, -9, разрушающих белки ВКМ. Как следствие — деградация фрагментированного коллагена. Следующая фаза – репаративная. Именно в этой фазе происходит активация функционирования фибробластов: клетки-предшественники мигрируют к местам повреждений, пролиферируют и дифференцируются в «репаративные» фибробласты, которые, продуцируя коллаген I и III типов и другие компоненты ВКМ, восстанавливают кожу в поврежденных зонах [4-6].

Описанный механизм — основополагающий для процесса ранозаживления после нарушения целостности кожных покровов инвазивными факторами, такими как, например, лазер или фракционное радиоволновое воздействие (микроигольчатый RF-лифтинг).

Стимуляцию активности фибробластов отмечают при применении любого лазерного воздействия на кожу (абляционного и неабляционного, фракционного и нефракционного). Успех лазерной процедуры зависит не столько от степени активизации функционирования фибробластов, сколько от правильного выбора лазерной методики, ко-

Словарик

СD44 — интегральный клеточный гликопротеин, играющий важную роль в межклеточных взаимодействиях, клеточной адгезии и миграции. Это главный рецептор клеточных поверхностей для гуалуроната в ВКМ. Микроокружение (ниша) стволовых клеток богато гиалуронаном. Соединение ГК с рецептором CD44, расположенном на мембране фибробласта, увеличивает активность этой клетки, повышая синтез компонентов ВКМ: коллагена, эластина и в большей степени ГК.

RHAMM — рецептор опосредованной гиалуронаном подвижности клеток (Receptor

Hyaluronan-Mediated Motility — RHAMM) участвует во взаимодействии клеток с ГК внеклеточного матрикса. RHAMM обеспечивает повышение качества эпителизации в среде, богатой ГК, миграцию клеток в очаг воспаления в дерме, где активируется распад ГК.

Транскрипционный фактор АР-1 группа структурно сходных белков, регулирующих различные этапы пролиферации и дифференцировки клеток. АР-1 повышает экспрессию (активность) генов, кодирующих синтез специфических ферментов — металлопротеиназ ММР-1, ММР-3 и ММР-9, которые играют основную роль в деградации ВКМ.

Микрофиламенты — тонкие белковые нити диаметром 5-7 нм, присутствующие в цитоплазме эукариотических (имеющих ядро) клеток, в частности фибробластов.

Актин и миозин — белки, образующие микрофиламенты эукариотических клеток, к ним относятся и белки цитоскелета фибробластов.

торый должен осуществляться в зависимости от типа, состояния кожи конкретного пациента, морфотипа ее старения и ее регенераторного потенциала [8], а также с учетом возможных нежелательных побочных явлений, сопровождающих лазерное воздействие [7]. Только тогда биологические эффекты взаимодействия лазерного излучения с кожей будут высокоэффективны, предсказуемы и безопасны [7].

Влияние на фибробласты дермы витамина А и его метаболи-TOB

Витамин А (ретинол) и его метаболиты, такие как ретиналь, ретиноевая кислота, эфиры ретинола — ретинил ацетат, ретинил пальмитат и др., относят к группе ретиноидов. В организме каждый ретиноид выполняет свою роль, в частности ретиноевая кислота, являющаяся наиболее биологически активной формой витамина А, влияет на рост, дифференцировку и апоптоз клеток, на процессы поддержания гомеостаза. Эффект ретиноидов реализируется на молекулярном уровне за счет регуляции транскрипции генов [9]. Показано, что местное применение 0,025-1% препаратов ретиноевой кислоты на протяжении 1-12 месяцев (за счет ее систематического взаимодействия с регулирующими экспрессию генов клеточными рецепторами фибробластов) способствует увеличению в дерме уровня коллагена [10, 11]. Однократное воздействие ретиноевой кислоты в высокой концентрации (5-10%) создает пилинговый эффект, при этом в течение некоторого времени, пока идет процесс реабилитации кожи, наблюдается и стимуляция функциональной активности фибробластов.

Применение препаратов peтиноевой кислоты подавляет синтез транскрипционного

фактора АР-1, что сопровождается уменьшением активности металлопротеиназ (ферментов, расщепляющих коллаген) и, соответственно, снижением фрагментации матриксного коллагена. Одновременно происходит индукция экспрессии трансформирующего фактора роста ТGF-β, который, в свою очередь, индуцирует в фибробластах экспрессию генов проколлагена I и III типов. Как следствие, наблюдается увеличение продукции коллагена этих типов [12].

Влияние на клетки кожи антиоксидантных препаратов

Одним из ключевых факторов старения считают оксидативный стресс, то есть процесс повреждения клеток в результате окисления под воздействием реактивных форм кислорода (ROS). Так, оксидативный стресс способствует экспрессии транскрипционных факторов р53 и р16, которые запускают сигнальные пути апоптоза и преждевременного старения клеток. По всей видимости, р53 и р16 прямо или косвенно блокируют факторы транскрипции, регулирующие процессы самоподдержания и дифференциации стволовых клеток [14-18]. Антиоксиданты, например аскорбиновая кислота, коэнзим Q 10 и витамин E, подавляют образование и накопление ROS в клетках; соответственно, они уменьшают индукцию стресс-опосредованных нальных путей, которые снижают антиоксидантную активность клеток [13, 14]. Так, витамин С демонстрирует фотопротекторные свойства и является необходимым кофактором для биосинтеза коллагена фибробластами. Коэнзим Q 10 обладает свойством снижать УФО-индуцированное увеличение продукции фибробластами металлопротеиназ, нарушающих целостность коллагенового матрикса [19]. А одномоментное применение аскорби-

новой кислоты и коэнзима Q 10 с витамином Е усиливает способность последнего к защите клеток от действия ROS [20].

PRP-терапия

PRP-терапия (Platelet Rich Plasта — плазма, богатая (обогащенная) тромбоцитами), благодаря входящим в состав PRP факторам роста/цитокинам, способна к стимуляции функциональной активности клеток кожи, а соответственно, и к улучшению ее микроструктуры. Факторы роста/ цитокины (ключевую роль среди которых играют такие факторы, как PDGF, TGF, IGF, EGF), взаимодействуя с поверхностными рецепторами клеток кожи, включая фибробласты, активируют внутриклеточные сигнальные пути, индуцирующие механизмы репарации ткани, в основе которых — пролиферация и дифференциация клеток, синтез компонентов ВКМ [21-24].

SPRS-терапия

Суть SPRS-терапии заключается в интрадермальном введении значительного количества аутологичных (собственных) функционально активных фибробластов дермы для пополнения популяции резидентных клеток кожи. В результате увеличивается количество нового («молодого») коллагена и других компонентов ВКМ за счет синтезируемых имплантированными фибробластами и, соответственно, активизируется ослабевающий с возрастом процесс ремоделирования дермы [25]. При этом за счет продукции имплантированными фибробластами факторов роста и цитокинов одновременно происходит и стимуляция активности самих резидентных фибробластов.

Цель применения всех перечисленных выше методов - омоложение, оздоровление кожи путем ремоделирования дермы

через воздействие на фибробласты. А полученные изменения в микроструктуре дермы, прежде всего в коллагеновом матриксе, в свою очередь, благотворно сказываются на функционировании всех клеток фибробластического дифферона.

Коллагеновый матрикс и функционирование фибробластов

Исследования подтверждают, что состояние коллагенового матрикса оказывает значительное влияние на функциональную активность фибробластов [4]. Так, фрагментация коллагенового матрикса при хроно- и фотостарении приводит к нарушению целостности коллагеновой сети ВКМ, что сопровождается нарушением фокальных контактов между фибробластами и коллагеновым матриксом, а это, в свою очередь, лишает фибробласты возможности находиться в растянутом состоянии, которое является обязательным условием для их метаболической активности (роста и функционирования) [8, 25]. Исследования Р. Delvove и соавт. (1991) с измерением механической силы, создаваемой фибробластами, проведенные в трехмерной коллагеновой камере, подтверждают, что снижение синтеза коллагена и повышение продукции металлопротеиназ является следствием уменьшения механического растяжения клеток (рис. 1) [26].

Механизм данного феномена заключается в следующем. Всю клеточную мембрану фибробластов покрывают трансмембранные гетеродимерные белки интегрины. На поверхности клетки они специфически связаны с коллагеновым матриксом, а внутри клетки — с актином, белком цитоскелета фибробластов. Так формируются комплексы фокальной адгезии, или фокальные контакты [28, 29], обеспечивающие тесно связанные между собой регуляторную и механическую функции фибробластов [4]. Образование этих комплексов приводит к индукции каскада внутриклеточных сигнальных путей, которые регулируют метаболизм фибробластов, включая баланс между продукцией коллагенов и их деградацией посредством металлопротеиназ. Именно благодаря фокальным контактам образуется динамическое механическое натяжение между цитоскелетом и коллагенами, поскольку микрофиламенты цитоскелета, расположенные на внутренней поверхности клеточной мембраны и в цитоплазме, физически сцеплены с интегринами и используют это сцепление для натяжения коллагеновой сети [29]. Внутреннее натяжение актин-миозиновых микрофиламентов активизирует комплекс внутриклеточных микротрубочек и промежуточных филаментов, что способствует образованию давления извне. Создается баланс между внешним давлением и внутренним натяжением актин-миозиновых микрофиламентов, и в результате устанавливается динамическое натяжение между фибробластами и коллагеновым матриксом. Как следствие, возникает адекватное растяжение фибробластов — условие, обязательное для выполнения ими своих функций, включая синтез коллагена и других компонентов ВКМ [4]. С возрастом структурная целостность коллагенового матрикса нарушается, а значит, уменьшается (ослабевает) механическое натяжение между ним и фибробластами. Это приводит к снижению фокальной адгезии фибробластов к коллагеновому матриксу и к снижению механической резистентности самих коллагеновых волокон. В результате утрачивается баланс

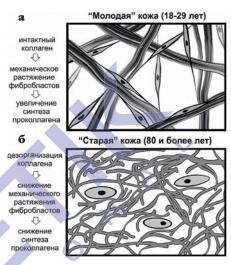


Рис. 1. Взаиморасположение фибробластов и коллагеновых волокон в дерме (no Varani J., et al., с изм.: a - в«молодой» коже (18–29 лет); δ — ϵ «старой» коже (более 80 лет) [25, 27].

между внутренним натяжением в фибробластах и давлением на них извне. Поэтому они теряют способность к растяжению; соответственно, снижается продукция ими коллагена, а продукция металлопротеиназ, напротив, увеличивается, что вызывает еще большую дезорганизацию коллагена. Создается порочный круг, поддерживающий механизмы старения кожи [4].

Можно ли воздействовать непосредственно на стволовые клетки кожи для улучшения их функционирования?

С возрастом в общей популяции фибробластов кожи происходят как нарушения их цитофизиологии и биосинтетической активности, так и уменьшение численности. У старых людей общее количество фибробластов дермы ниже, чем у молодых, в среднем на 35% [25], ниже и биосинтетическая активность клеток; продукция коллагена меньше на 75% [29]. Соответственно, изменения затрагивают и субпопуляцию СК

специальный раздел МИР КЛЕТОК

[30, 31]. По мнению ряда исследователей, эти изменения не обязательно включают уменьшение общей численности СК, они могут быть связаны с нарушением функционирования СК — уменьшением их мобилизации или сокращением количества СК, способных отвечать на сигналы к пролиферации [31, 32]. Так, с возрастом в СК возможны развитие дефектов в репарации ДНК, аккумуляция токсических метаболитов (например, ROS), митохондриальные дисфункции. Кроме того, могут наблюдаться и эпигенетические нарушения, а это, в свою очередь, приводит к изменениям в молекулярных механизмах каскадов сигнальных путей, ассоциированных с СК,

и, соответственно, к нарушениям функций последних [30, 31]. Данные молекулярные механизмы, как уже указывалось выше, чрезвычайно сложны и многосторонни. Пока знания о них еще весьма ограниченные, так же, как и понимание функционирования ниш (микроокружения) СК, без чего невозможно и создание инструментов воздействия на эти клетки.

Тем не менее имеющиеся на сегодняшний день данные позволяют предположить, что косвенное воздействие, способное функционирование улучшить СК, все же возможно.

Так, в исследованиях показано, что первостепенную роль в

функционировании СК играет ниша, то есть количественный и качественный состав окружающего их ВКМ, экспрессия мембранных белков, липидов, сигнальных молекул и т.д. Следовательно, поддержание ниши в хорошем состоянии будет оказывать благоприятный эффект и на функционирование СК [31, 33, 34]. Достичь этой цели можно посредством методов, способствующих ремоделированию дермы, а также увеличению популяции фибробластов, способных произвести новый коллаген и другие компоненты ВКМ, например путем применения препаратов гиалуроновой кислоты, лазерных технологий, PRP-терапии, SPRS-терапии.

- 1. Калюжная Л., Шармазан С., Моисеев Е. и др. Место гиалуроновой кислоты в проблеме старения кожи // Aesthetic Medicine. 2009. № 4 (10). С. 44–46.
- 2. Wang E., Luis A., Garsa M. In vivo stimulation of de novo collagen production by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin // Arch Dermatol. 2007; 143:155-63.
- 3. Rock K., Fishcer K., Fishcer J. Hyaluronan used for intradermal injections is incorporated into the pericellular matrix and promotes proliferation in human skin fibroblasts in vitro // Dermatology. 2010; 221:219-28.
- 4. Fisher G., Varani J., Voorhees J. Looking older: Fibroblast Collapse and Therapeutic Implications // Arch Dermatol. 2008; 144, 5: 666-672.
- 5. Orringer J., Rittie L., mHamilton T. Intraepidermal erbium: YAG laser resurfacing // J Am Acad Dermatol. 2011; 64 (1): 119-128.
- 6. Manstein D., Herron G., Sink R. Fractional photothermolisis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury // Lasers in surgery and medicine, 2004; 34: 426-438.
- 7. Шептий О. Лазерная коррекция возрастных изменений кожи и фотостарения кожи // Эстетическая медицина. 2012. XI (1). С. 39-58.
- 8. Зорина А., Зорин В., Копнин П. Определение регенераторного потенциала кожи //АNTI-AGE косметология и медицина. 2018. № 1. С. 48–53.
- 9. Bauman L., Saghari S. Основные сведения об эпидермисе. Химический пилинг / Л. Бауманн // Косметическая дерматология. Принципы и практика / пер. с англ.; под ред. проф. Н.Н. Потекаева. М.: МЕДпресс-информ, 2012. 688 с.
- 10. Varani J., Warner R., Gharaee-Kermani M., et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin // J Invest Dermatol. 2000; 114: 480–486.
- 11. JKafi R., Kwak H., Schumacher W., et al. Improvement of naturally aged skin with vitamin A (retinol) // Arch Dermatol 2007; 143: 606-612.
- 12. Quan T., Qin Z., Shao Y., et al. Retinoids suppress cysteine-rich protein 61 (CCN1), a negative regulator of collagen homeostasis, in skin equivalent cultures and aged human skin in vivo // Experimental Dermatology. 2011; 20 (7): 572-576.
- 13. Han K-H., Choi H.R., C-H Won, et al. Alteration of the TGF-b/SMAD pathway in intrinsicallyand UV-induced skin aging // Mechanisms of Ageing and Development, 2005: 126: 560-567.
- 14. Zouboulis C., Makrantonaki E. Clinical aspect and molecular diagnostics of skin aging // Clinics in dermatology. 2011; 29: 3-14.
- 15. Vaziri H., Benchimol S. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss / DNA damage model of cell aging // Experimental Gerontology. 1996; 31, Nos.: 295-301.
- 16. Jun J., Lau L. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing // Nature cell biology. 2010; 12 (7): 676-685.
- 17. Han K-H., Choi H.R., C-H. Won, et al. Alteration of the TGF-b/SMAD pathway in intrinsicallyand UV-induced skin aging // Mechanisms of Ageing and Development. 2005; 126: 560-567.

- Kohl E., Steinbauer J., Landthaler M., Szeimies R-M. Skin ageing // JEADV. 2011; 25 (8): 873–884.
- 19. Inui M., Ooe M., Fuji K., et al. Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo // Biofactors. 2008: 32: 237–243.
- Thiele J., Hsieh S., Ekanayake-Mudiyanselage S. Vitamin E: critical review of its current use in cosmetic and clinical dermatology // Dermatol Surg. 2005; 31: 805–813.
- 21. Зорина А.И., Зорин В.Л., Черкасов В.Р. PRP в эстетической медицине //Эксперимент. и клинич. дерматокосметология. 2013. № 6. С.10–22.
- 22. Marx R. Platelet rich plasma: evidence to support its use // J. Oral Maxillofac. Surg. 2004; 62: 489–496.
- Andia I., Abate M. Platelet-rich plasma: underlying biology and clinical correlates // Regen. Med. 2013; 8(5): C. 645–58.
- 24. Kim D., Je Y., Kim C., Lee Y., et al. Can platelet-rich plasma be used for skin rejuvenation? Evaluation of effects of platelet-rich plasma on human dermal fibroblast //Ann. Dermatol. 2011; 23(4): 424–431.
- Varani J., Dame M., Rittie L., et al. Decreased collagen production in chronologically aged skin. Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation // AJP. 2006; 168 (6): 1861–1868.
- Delvoye P., Wiliquet P., Leveque J-L., et al. Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel // J Invest Dermatol. 1991; 97: 898–902.
- 27. Зорина А.И., Деев Р.В, Зорин В.Л., Черкасов В.Р. Старение кожи, опосредованное фибробластами. Возможности терапевтической коррекции // Эксперимент. и клинич. дерматокосметология. 2011. № 5. С. 43–51.
- Омельяненко Н.П., Слуцкий Л.И. Соединительная ткань (гистофизиология и биохимия). Т. 1 / под ред. С.П. Миронова. М.: Известия, 2009. С. 69–70.
- 29. Fisher G., Kang S., Varani J., et al. Mechanism of photoaging and chronological skin aging // Arch Dermatol. 2002; 138: 1462–1467.
- Jung Y., Brack A.S. Cellular mechanisms of somatic stem cell aging // Curr Top Dev Biol. 2014; 107: 405–38.
- Christine M. P., Reichelt J., Bauer J. W., Laimer M. Current and future perspectives of stem cell therapy in dermatology // Ann Dermatol. 2017; 29 (6): 667–87.
- 32. Zouboulis C., Adjaye J., Akamatsu H., et al. Human skin stem cells and the ageing process // Experimental gerontology. 2008; 43: 986–97.
- Ring A., Kim Y.M., Kahn M. Wnt/catenin signaling in adult stem cell physiology and disease // Stem Cell Rev. 2014; 10: 512–525.
- 34. Kurtz A., Oh S.J. Age related changes of the extracellular matrix and stem cell maintenance // Prev Med. 2012 May; 54 Suppl: S50-6. doi: 10.1016/j.ypmed.2012.01.003. Epub 2012 Jan 20.

21-я СПЕЦИАЛИЗИРОВАННАЯ

ВЫСТАВКА

ПРОФЕССИОНАЛЬНЫХ СРЕДСТВ, ОБОРУДОВАНИЯ И ИНСТРУМЕНТОВ ДЛЯ САЛОНОВ КРАСОТЫ, ПАРИКМАХЕРСКИХ

место проведения: г. Симферополь, ул. Набережная, 75 В, ТЦ «Гагаринский»

тел.: +7 (3652) 54 14 04 моб. +7 (978) 71 83 200

www.dominanta-expo.com